This paper presents the simulation of the operation of an electric forklift fleet within an intralogistics scenario. For this purpose, the open source simulation tool CARLA is used; according to our knowledge this is a novel approach in the context of logistics simulation. First, CARLA is used to generate and visualize a realistic 3D outdoor warehouse scenario, incorporating a number of randomly moving forklifts. In a next step, intralogistics transport tasks, such as pick-and-place, are simulated for the forklift fleet, including shortest-path finding. Furthermore, the capability to play back localization data, previously recorded from a ''real'' forklift fleet, is demonstrated.This play back is done in the original recreated environment, thereby enabling the visualization of the forklifts movements. Finally, the energy consumption of the forklift trucks is simulated by integrating a physical battery model that generates the state of charge (SOC) of each truck as a function of load and activity. To demonstrate the wide range of possible applications for the CARLA simulation platform, we describe two use cases. The first deals with the problem of detecting regions with critically high traffic densities, the second with optimal placement of charging stations for the forklift trucks. Both use cases are calculated for an exemplary warehouse model.
Rechargeable lithium-ion (Li-ion) batteries are a ubiquitous element of modern technology. In the last decades, the production and design of such batteries and their adjacent embedded charging and safety protocols, denoted by Battery Management Systems (BMS), has taken central stage. A fundamental challenge to be addressed is the trade-off between the speed of charging and the ageing behavior, resulting in the loss of capacity in the battery cell. We rely on a high-fidelity physics-based battery model and propose an approach to data-driven charging and safety protocol design. Following a Counterexample-Guided Inductive Synthesis scheme, we combine Reinforcement Learning (RL) with recent developments in data-driven formal methods to obtain a hybrid control strategy: RL is used to synthesise the individual controllers, and a data-driven abstraction guides their partitioning into a switched structure, depending on the initial output measurements of the battery. The resulting discrete selection among RL-based controllers, coupled with the continuous battery dynamics, realises a hybrid system. When a design meets the desired criteria, the abstraction provides probabilistic guarantees on the closed-loop performance of the cell.
Integrating Artificial Intelligence (AI) technology in electric vehicles (EV) introduces unique challenges for safety assurance, particularly within the framework of ISO 26262, which governs functional safety in the automotive domain. Traditional assessment methodologies are not geared toward evaluating AI-based functions and require evolving standards and practices. This paper explores how an independent assessment of an AI component in an EV can be achieved when combining ISO 26262 with the recently released ISO/PAS 8800, whose scope is AI safety for road vehicles. The AI-driven State of Charge (SOC) battery estimation exemplifies the process. Key features relevant to the independent assessment of this extended evaluation approach are identified. As part of the evaluation, robustness testing of the AI component is conducted using fault injection experiments, wherein perturbed sensor inputs are systematically introduced to assess the component's resilience to input variance.
As hybrid electric vehicles (HEVs) gain traction in heavy-duty trucks, adaptive and efficient energy management is critical for reducing fuel consumption while maintaining battery charge for long operation times. We present a new reinforcement learning (RL) framework based on the Soft Actor-Critic (SAC) algorithm to optimize engine control in series HEVs. We reformulate the control task as a sequential decision-making problem and enhance SAC by incorporating Gated Recurrent Units (GRUs) and Decision Transformers (DTs) into both actor and critic networks to capture temporal dependencies and improve planning over time. To evaluate robustness and generalization, we train the models under diverse initial battery states, drive cycle durations, power demands, and input sequence lengths. Experiments show that the SAC agent with a DT-based actor and GRU-based critic was within 1.8% of Dynamic Programming (DP) in fuel savings on the Highway Fuel Economy Test (HFET) cycle, while the SAC agent with GRUs in both actor and critic networks, and FFN actor-critic agent were within 3.16% and 3.43%, respectively. On unseen drive cycles (US06 and Heavy Heavy-Duty Diesel Truck (HHDDT) cruise segment), generalized sequence-aware agents consistently outperformed feedforward network (FFN)-based agents, highlighting their adaptability and robustness in real-world settings.
Reliable digital twins of lithium-ion batteries must achieve high physical fidelity with sub-millisecond speed. In this work, we benchmark three operator-learning surrogates for the Single Particle Model (SPM): Deep Operator Networks (DeepONets), Fourier Neural Operators (FNOs) and a newly proposed parameter-embedded Fourier Neural Operator (PE-FNO), which conditions each spectral layer on particle radius and solid-phase diffusivity. Models are trained on simulated trajectories spanning four current families (constant, triangular, pulse-train, and Gaussian-random-field) and a full range of State-of-Charge (SOC) (0 % to 100 %). DeepONet accurately replicates constant-current behaviour but struggles with more dynamic loads. The basic FNO maintains mesh invariance and keeps concentration errors below 1 %, with voltage mean-absolute errors under 1.7 mV across all load types. Introducing parameter embedding marginally increases error, but enables generalisation to varying radii and diffusivities. PE-FNO executes approximately 200 times faster than a 16-thread SPM solver. Consequently, PE-FNO's capabilities in inverse tasks are explored in a parameter estimation task with Bayesian optimisation, recovering anode and cathode diffusivities with 1.14 % and 8.4 % mean absolute percentage error, respectively, and 0.5918 percentage points higher error in comparison with classical methods. These results pave the way for neural operators to meet the accuracy, speed and parametric flexibility demands of real-time battery management, design-of-experiments and large-scale inference. PE-FNO outperforms conventional neural surrogates, offering a practical path towards high-speed and high-fidelity electrochemical digital twins.
This paper proposes a control-oriented optimization platform for autonomous mobile robots (AMRs), focusing on extending battery life while ensuring task completion. The requirement of fast AMR task planning while maintaining minimum battery state of charge, thus maximizing the battery life, renders a bilinear optimization problem. McCormick envelop technique is proposed to linearize the bilinear term. A novel planning algorithm with relaxed constraints is also developed to handle parameter uncertainties robustly with high efficiency ensured. Simulation results are provided to demonstrate the utility of the proposed methods in reducing battery degradation while satisfying task completion requirements.
The accelerating uptake of battery-electric vehicles demands infrastructure planning tools that are both data-rich and geographically scalable. Whereas most prior studies optimise charging locations for single cities, state-wide and national networks must reconcile the conflicting requirements of dense metropolitan cores, car-dependent exurbs, and power-constrained rural corridors. We present DOVA-PATBM (Deployment Optimisation with Voronoi-oriented, Adaptive, POI-Aware Temporal Behaviour Model), a geo-computational framework that unifies these contexts in a single pipeline. The method rasterises heterogeneous data (roads, population, night lights, POIs, and feeder lines) onto a hierarchical H3 grid, infers intersection importance with a zone-normalised graph neural network centrality model, and overlays a Voronoi tessellation that guarantees at least one five-port DC fast charger within every 30 km radius. Hourly arrival profiles, learned from loop-detector and floating-car traces, feed a finite M/M/c queue to size ports under feeder-capacity and outage-risk constraints. A greedy maximal-coverage heuristic with income-weighted penalties then selects the minimum number of sites that satisfy coverage and equity targets. Applied to the State of Georgia, USA, DOVA-PATBM (i) increases 30 km tile coverage by 12 percentage points, (ii) halves the mean distance that low-income residents travel to the nearest charger, and (iii) meets sub-transmission headroom everywhere -- all while remaining computationally tractable for national-scale roll-outs. These results demonstrate that a tightly integrated, GNN-driven, multi-resolution approach can bridge the gap between academic optimisation and deployable infrastructure policy.
Efficient energy management in prosumer households is key to alleviating grid stress in an energy transition marked by electric vehicles (EV), renewable energies and battery storage. However, it is unclear how households optimize prosumer EV charging. Here we study real-world data from 90 households on fixed-rate electricity tariffs in German-speaking countries to investigate the potential of Deep Reinforcement Learning (DRL) and other control approaches (Rule-Based, Model Predictive Control) to manage the dynamic and uncertain environment of Home Energy Management (HEM) and optimize household charging patterns. The DRL agent efficiently aligns charging of EV and battery storage with photovoltaic (PV) surplus. We find that frequent EV charging transactions, early EV connections and PV surplus increase optimization potential. A detailed analysis of nine households (1 hour resolution, 1 year) demonstrates that high battery capacity facilitates self optimization; in this case further algorithmic control shows little value. In cases with relatively low battery capacity, algorithmic control with DRL improves energy management and cost savings by a relevant margin. This result is further corroborated by our simulation of a synthetic household. We conclude that prosumer households with optimization potential would profit from DRL, thus benefiting also the full electricity system and its decarbonization.
The state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safe and reliable operation of electric vehicles. Nevertheless, the prevailing SOH estimation methods often have limited generalizability. This paper introduces a data-driven approach for estimating the SOH of LIBs, which is designed to improve generalization. We construct a hybrid model named ACLA, which integrates the attention mechanism, convolutional neural network (CNN), and long short-term memory network (LSTM) into the augmented neural ordinary differential equation (ANODE) framework. This model employs normalized charging time corresponding to specific voltages in the constant current charging phase as input and outputs the SOH as well as remaining useful of life. The model is trained on NASA and Oxford datasets and validated on the TJU and HUST datasets. Compared to the benchmark models NODE and ANODE, ACLA exhibits higher accuracy with root mean square errors (RMSE) for SOH estimation as low as 1.01% and 2.24% on the TJU and HUST datasets, respectively.
Accurate estimation of lithium-ion battery capacity degradation is critical for enhancing the reliability and safety of battery operations. Traditional expert models, tailored to specific scenarios, provide isolated estimations. With the rapid advancement of data-driven techniques, a series of general-purpose time-series foundation models have been developed. However, foundation models specifically designed for battery capacity degradation remain largely unexplored. To enable zero-shot generalization in battery degradation prediction using large model technology, this study proposes a degradation-aware fine-tuning strategy for time-series foundation models. We apply this strategy to fine-tune the Timer model on approximately 10 GB of open-source battery charge discharge data. Validation on our released CycleLife-SJTUIE dataset demonstrates that the fine-tuned Battery-Timer possesses strong zero-shot generalization capability in capacity degradation forecasting. To address the computational challenges of deploying large models, we further propose a knowledge distillation framework that transfers the knowledge of pre-trained foundation models into compact expert models. Distillation results across several state-of-the-art time-series expert models confirm that foundation model knowledge significantly improves the multi-condition generalization of expert models.